企业等级: | 普通会员 |
经营模式: | 生产加工 |
所在地区: | 山东 潍坊 |
联系卖家: |
李海伟 先生
![]() |
手机号码: | 15684302892 |
公司官网: | www.sdgxhb.cn |
公司地址: | 山东省临朐县223省道与南环路交叉口往南2公里路西 |
发布时间:2020-06-30 00:04:24
某车间离心引风机至2016年止已运行近8 年,振动一直偏大,已困扰生产多年。即使是更新了叶轮总成,并在联轴器对中性符合允差的情况下,运行时前后两轴承位壳振实测振动速度有效值分别达到了3.0 mm/s 和3.6 mm/s 左右,这是属于“可容忍”的范围,但不宜长期运行工作。加进气箱后,离心风机的全开流量降低,与无进气箱相比,流量降低了16。经我设备人员分析,认为振动大的原因有:一是混凝土基础过于单薄,重量不足,且运行时基础周围地板有明显的颤动;二是预埋地脚螺栓有松动迹象。经上级研究,决定趁当年大修时间充足的机会,对上述存在问题整改,破除旧基础后,按本文前述处理措施重新设计、施工新的混凝土基础和预埋地脚螺栓。
开机正常生产后,该离心引风机轴承位壳振实测振动速度有效值分别降到了0.45 mm/s 和0.52 mm/s,属“良好”级别。安装精度不达标及其检查处理措施安装精度主要是指风机轴与驱动电机轴的同心度,即对中性。离心式风机联轴器的同心度要求很高。(2)在振动比较明显的管段上加装管道减震器,使管道与风机壳体呈柔性连接,减小或缓冲振动。如果联轴器没有找正,或是找正达不到要求,引起离心引风机振动将不可避免。应注意的是,即使原来同心度已经符合要求了,但是风机运行一段时间后,由于各种原因,同心度会也会发生变化,所以应注意定期检查同心度,如发现同心度超过允许偏差了,要立即重新找正。因此,当风机发生异常的振动故障时,检查联轴器的对中情况是必不可少的。
综上所述,本文通过结构优化对离心风机金属叶轮稳定运行影响进行研究,简要分析了各部件结构优化对离心风机金属叶轮稳定运行的影响。5%,修正的k-ε模型,各流量工况下离心引风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文离心引风机性能的准确度和可靠性预测提供支撑。主要从集流器优化对离心风机金属叶轮稳定运行影响、窝壳优化对离心风机金属叶轮稳定运行影响、电机优化对离心风机金属叶轮稳定运行影响,以及叶片形状优化对离心引风机金属叶轮稳定运行影响四个方面进行分析,为保证金属叶轮的稳定运行提供技术支持。各部件结构优化对离心风机金属叶轮稳定运行的影响
集流器优化对离心引风机金属叶轮稳定运行的影响
集流器的工作原理是通过将气流均匀地送入叶轮进口截面,以达到提高离心引风机叶轮的效率以及风机整体性能的目的。集流器的结构形式对气流的流动损失以及金属叶轮的平稳运行都有很大影响,因此对集流器的结构优化是非常重要的。在设计集流器的结构时,应确保较大程度地符合金属叶轮附近气流的流动情况,同时还应保证集流器内气流的平稳运行。在设计集流器的结构时,应确保较大程度地符合金属叶轮附近气流的流动情况,同时还应保证集流器内气流的平稳运行。集流器的类型有很多种,常用的集流器是锥弧形集流器,锥弧形集流器的气流运行一般比较平稳,但是集流器喉部到叶轮进口阶段容易发生边界层分离现象,增加离心引风机的损失,导致离心风机效率降低。因此,必须优化集流器结构,通过减小集流器的锥度、增加喉部半径的方式,提高离心风机的效率,保证金属叶轮的平稳运行。
本文以离心引风机为研究对象,对4 种组合方式的消声蜗壳进行了试验测量,研究了每一种组合的降噪效果及对风机气动性能的影响。试验在符合ISO3745 标准的半消声室中进行,其四周墙壁及屋顶均装有消声尖劈,消声室截止频率100 Hz,本底噪声为26 dB( A) 。1)离心引风机在进气箱出口与叶轮进口处有涡旋产生,其位置与流量大小相关,涡旋的存在导致叶轮流道发生了堵塞,是离心风机效率降低的原因之一。试验装置和测试系统按照***标准GB/T1236-2000《工业通风机用标准化风道进行性能试验》和GB/T2888-91《离心引风机和罗茨鼓风机噪声测量方法》的要求设计、制造、测试。离心引风机进气口端连接符合GB/T 1236 规定的风机性能试验进气试验装置。使用智能压力风速风量仪测出PL3 位置的静压和PL5 处的流量压差,然后再根据其他测量的数据算出风机全压和静压试验装置。
试验采用进口堵片方式调节流量,从大流量至小流量共选取8 个工况点,分别测试每个工况点的风机流量、压力、功耗和噪声。后计算风机标况下流量、全压、全压效率、总A 声级。本试验风机的结构简图,在风机蜗板和前后盖板上可分别固定穿孔钢板,穿孔板与蜗壳本体之间形成10 mm 的空腔,空腔内填充超细玻璃棉,形成消声蜗壳。通过Fluent后处理计算得出蜗壳壁面区域于以上4个截面处所受粘性力大小Fν,测量力矩中心至力原点距离R,由额定工况下风机总质量流量q计算得单位质量流体所受黏性力矩平均值mFR/q。以此形成4 种消声蜗壳组合: A 组合,周向蜗板有消声层;B 组合,蜗壳后盖板有消声层; C 组合,周向蜗板和后盖板有消声层; D 组合,周向蜗板和前盖板有消声层。选用的穿孔板采用板厚1 mm,孔径6 mm,穿孔率约为22%。各种加装吸声结构组合,风机蜗壳内部的通流结构尺寸和原风机一致。
离心引风机性能试验原理及其装置为了验证修正后数值计算模型的准确度,对原风机的不同工况气动性能试验。将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε 模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9.5%,修正的k-ε 模型,各流量工况下离心引风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文离心引风机性能的准确度和可靠性预测提供支撑。也证明了消声蜗壳有很好的降噪效果,并且离心引风机蜗壳尺寸虽然有一定的增大,但相对于消声器等其他降噪方法优势还是很明显的。设计原理分析原风机蜗壳内壁型线采用的是传统蜗壳型线设计方法,即不考虑壁面粘性摩擦的影响,气流动量矩保持不变,运用不等边基圆法绘制的近似阿基米德螺旋线。而实际流动过程中,气体粘性作用常导致其速度在过流断面上呈现的分布不均匀现象。
对于低速小型多翼离心风机而言,由于气体流道狭窄,受粘性作用的影响,风机内壁面边界层分离加剧,经过叶轮加速的气体流速沿蜗壳径向方向逐渐减小,而在离心引风机蜗壳出口处,由于同时受到蜗舌结构和蜗壳壁面的影响,其流速为管道流速度分布,受粘性作用的影响,蜗壳内流体于整个流道空间内呈现速度分布不均匀的现象,因此在实际流动过程中,流体动量矩并不是不变的,而是随流动的进行不断减小,故基于动量矩守恒定律设计的传统蜗壳型线存在动量修正的必要。改型设计方法由于气体粘性力无法通过简单的公式运算获得,且其大小受气体速度的影响,因此本文采用一种简单化的求解方法,即基于传统不等边基圆法,离心引风机运用改进后的k-ε 模型对原风机进行数值模拟,设置如图8 所示的4 个监测截面,其方位角φ 分别为90°、180°、270°、360°。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机,出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0。通过Fluent 后处理计算得出蜗壳壁面区域于以上4 个截面处所受粘性力大小Fν ,测量力矩中心至力原点距离R,由额定工况下风机总质量流量q 计算得单位质量流体所受黏性力矩平均值m FR / q。
免责声明:以上信息由会员自行提供,内容的真实性、准确性和合法性由发布会员负责,产品网对此不承担任何责任。产品网不涉及用户间因交易而产生的法律关系及法律纠纷, 纠纷由您自行协商解决。
风险提醒:本网站仅作为用户寻找交易对象,就货物和服务的交易进行协商,以及获取各类与贸易相关的服务信息的平台。为避免产生购买风险,建议您在购买相关产品前务必 确认供应商资质及产品质量。过低的价格、夸张的描述、私人银行账户等都有可能是虚假信息,请采购商谨慎对待,谨防欺诈,对于任何付款行为请您慎重抉择!如您遇到欺诈 等不诚信行为,请您立即与产品网联系,如查证属实,产品网会对该企业商铺做注销处理,但产品网不对您因此造成的损失承担责任!
联系:304108043@qq.com是处理侵权投诉的专用邮箱,在您的合法权益受到侵害时,欢迎您向该邮箱发送邮件,我们会在3个工作日内给您答复,感谢您对我们的关注与支持!
山东冠熙环保设备有限公司 电话:0536-3690068 传真:0536-3690068 联系人:李海伟 15684302892
地址:山东省临朐县223省道与南环路交叉口往南2公里路西 主营产品:轴流风机,耐高温高湿风机,烘干设备用风机,离心风机,除尘风机
Copyright © 2025 版权所有: 产品网
免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。产品网对此不承担任何保证责任。
您好,欢迎莅临山东冠熙,欢迎咨询...